Volume 2, Issue 3, September 2018, Page: 30-35
Genetic Diversity of the N’Dama Breed in Mali Using SSR Markers
Drissa Konaté, Department of Biology, Faculty of Sciences & Techniques, University of Sciences, Techniques and Technologies, Bamako, Mali
Diakaridia Traoré, Department of Biology, Faculty of Sciences & Techniques, University of Sciences, Techniques and Technologies, Bamako, Mali; National Center for Artificial Insemination, Bamako, Mali
Sognan Dao, Department of Biology, Faculty of Sciences & Techniques, University of Sciences, Techniques and Technologies, Bamako, Mali
Rokiatou Fané, Department of Biology, Faculty of Sciences & Techniques, University of Sciences, Techniques and Technologies, Bamako, Mali
Oumar Ouattara, Department of Biology, Faculty of Sciences & Techniques, University of Sciences, Techniques and Technologies, Bamako, Mali
Ramata Diop, Department of Biology, Faculty of Sciences & Techniques, University of Sciences, Techniques and Technologies, Bamako, Mali
Amadou Hamadoun Babana, Department of Biology, Faculty of Sciences & Techniques, University of Sciences, Techniques and Technologies, Bamako, Mali
Received: Sep. 22, 2018;       Accepted: Oct. 15, 2018;       Published: Nov. 13, 2018
DOI: 10.11648/j.ijast.20180203.11      View  183      Downloads  24
Abstract
The N'Dama race, trypanotolerant and well adapted to the climatic conditions of Mali, is threatened of disappearance by the introduction of other genes by means of the artificial insemination with the exotic races or zebus. In order to adopt preservation and conservation strategies, it is important to study the genetic characteristics of the race across the country. In this study, carried out on the race in its cradle (Yanfolila district, Sikasso region), the genetic diversity of 119 N'Dama race, from the Madina-Diassa Center for Preservation, Multiplication and Dissemination of Endemic Ruminant Livestock, was evaluated with 9 microsatellite markers (SSR). A total of 60 alleles were obtained. The number of alleles varied from 2 (BM 1824) to 12 (INRA 37) with an average of 6.67 per locus. The PIC ranked from 0.39 (BM 1824) to 0.9183 (INRA 37) with an average of 0.6605. Genetic diversity ranged from 0.4293 (BM 1824) to 0.9228 (INRA) with an average of 0.6908. The 119 N'Dama races were classified into two groups I and J according to the genetic similarities revealed by the 9 SSR markers using the UPGMA method. Group J was formed with the majority (85%) of individuals and composed of four (4) clusters J1, J2, J3 and J4. The 69 Nd, 71 Nd and 72 Nd individuals showed strong dissimilar compared to other individuals in group J and formed cluster J1. Moreover, one cluster, with 15% of individuals, was belonged to Group I. The results of this study will contribute to the application of molecular tools and strengthen strategies for conservation, preservation and genetic improvement of the N’Dama race in Mali.
Keywords
Genetic Diversity, N'Dama, SSR Marker, Mali
To cite this article
Drissa Konaté, Diakaridia Traoré, Sognan Dao, Rokiatou Fané, Oumar Ouattara, Ramata Diop, Amadou Hamadoun Babana, Genetic Diversity of the N’Dama Breed in Mali Using SSR Markers, International Journal of Animal Science and Technology. Vol. 2, No. 3, 2018, pp. 30-35. doi: 10.11648/j.ijast.20180203.11
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Coulibaly, T & Diallo, L. (2014). Diagnostic de la situation de l’élevage N’Dama dans son berceau de race (cercles de Bougouni et de Yanfolila). p 46.
[2]
Coulomb, J. (1976). La race N'Dama: quelques caractéristiques zootechniques. Revue d'élevage et de médecine vétérinaire des pays tropicaux, 29(4), 367-380.
[3]
Konaté M. (2014). Etude des effets défavorables de la transhumance sur la gestion des ressources génétiques animales des ruminants Endémiques. Rappor final. p 45.
[4]
Hussain, T., Babar, M. E., Peters, S. O., Wajid, A., Ali, A., Azam, A. & De Donato, M. (2016). Microsatellite Markers Based Genetic Evaluation of Pakistani Cattle Breeds. Pakistan Journal of Zoology, 48(6).
[5]
Ndiaye, N. P., Sow, A., Dayo, G. K., Ndiaye, S., Sawadogo, G. J., & Sembène, M. (2015). Genetic diversity and phylogenetic relationships in local cattle breeds of Senegal based on autosomal microsatellite markers. Veterinary world, 8(8), 994.
[6]
Kaboré M. (2012). Etude de la diversité génétique des taurins Baoulé du Burkina Faso à l’aide de marqueurs microsatellites. Université d’Ouagadougou Burkina Faso unité de formation et de recherche en Sciences de la Vie et de la Terre (UFR/SVT), CERBA/LABIOGENEUFR/SVT, DEA. 86.
[7]
Goudarzi, K. M., Belemsaga, D. M., Ceriotti, G., Laloë, D., Fagbohoum, F., Kouagou, N. T., ... & Touré, S. (2001). Caractérisation de la race bovine Somba à l’aide de marqueurs moléculaires. Revue d’Elevage et de Médecine Vétérinaire des pays Tropicaux, 54(2), 129-138.
[8]
Arora, R., Lakhchaura, B. D., Prasad, R. B., Tantia, M. S. & Vijh, R. K. (2004). Genetic diversity analysis of two buffalo populations of northern India using microsatellite markers. Journal of Animal Breeding and Genetics, 121: 111–118.
[9]
Azhar, P. M., Chakraborty, D., Iqbal, Z., & Malik, A. A. (2018). Microsatellite Markers as a Tool for Characterization of Small Ruminants: A Review. Int. J. Curr. Microbiol. App. Sci, 7(1), 1330-1342.
[10]
Portetelle, D., Haezebroeck, V., Mortiaux, F., & Renaville, R. (2000). Traçabilité dans la filière animale. Biotechnologie, Agronomie, Société et Environnement, 4(4), 233-240.
[11]
Lirón, J. P., Ripoli, M. V., De Luca, J. C., Peral-García, P., & Giovambattista, G. (2002). Analysis of genetic diversity and population structure in Argentine and Bolivian Creole cattle using five loci related to milk production. Genetics and Molecular Biology, 25(4), 413-419.
[12]
FAO (2011). Molecular genetic characterization of animal genetic resources. FAO Animal Production and Health Guidelines. No. 9. Rome.
[13]
Brzeziński, T., & Majid, S. (1993). Quantum group gauge theory on quantum spaces. Communications in Mathematical Physics, 157(3), 591-638.
[14]
Vaiman, D., Mercier, D., Moazami-Goudarzi, K., Eggen, A., Ciampolini, R., Lépingle, A., & Lévéziel, H. (1994). A set of 99 cattle microsatellites: characterization, synteny mapping, and polymorphism. Mammalian Genome, 5(5), 288-297.
[15]
Mommens, G., Coppieterst, W., Weghe, A., Zeveren, A. V., & Bouquet, Y. (1994). Dinucleotide repeat polymorphism at the bovine MM12E6 and MM8D3 loci. Animal Genetics, 25(5), 368-368.
[16]
Bishop, M. D., Kappes, S. M., Keele, J. W., Stone, R. T., Sunden, S. L., Hawkins, G. A., & Yoo, J. (1994). A genetic linkage map for cattle. Genetics, 136(2), 619-639.
[17]
Georges M. and Massey J. M. (1992). Polymorphic DNA markers in Bovidae. Patent WO 92/13102 1992. Gêbczyñski M. and Tomaszewska-Guszkiewicz K. 1987. Genetic variability in the European bison. Biochemical Systematics and Ecology 15: 285–288.
[18]
Al-Atiyat, R. M. (2016). Association of allele diversity and polymorphism of microsatellites markers in the tropical goat. Research Journal of Biotechnology Vol, 11, 9.
[19]
Dao, S., Timbine, H., Goita, O., & Traore, D. (2018). Genetic Variability Assessment in Irrigated Rice (Oryza sativa and Oryza glaberrima) by PCR-SSR in Mali. International Journal of Genetics and Genomics, 6(2), 22.
[20]
Nei, M., & Takezaki, N. (1983). Estimation of genetic distances and phylogenetic trees from DNA analysis. In Proceedings of the 5th world congress on genetics applied to livestock production Vol. 21, pp. 405-412.
[21]
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution, 33(7), 1870-1874.
[22]
Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American journal of human genetics, 32(3), 314.
[23]
Kumar, S. N., Jayashankar, M. R., Nagaraja, C. S., Govindaiah, M. G., Saravanan, R., & Karthickeyan, S. M. K. (2006). Molecular characterization of Hallikar breed of cattle using microsatellite markers. Asian Australasian journal of animal sciences, 19(5), 622.
[24]
Kramarenko, A. S., Gladyr, E. A., Kramarenko, S. S., Pidpala, T. V., Strikha, L. A., & Zinovieva, N. A. (2018). Genetic diversity and bottleneck analysis of the Red Steppe cattle based on microsatellite markers. Ukrainian Journal of Ecology, 8(2), 12-17.
[25]
Grema, M., Traoré, A., Issa, M., Hamani, M., Abdou, M., Soudré, A., & Periasamy, K. (2017). Short tandem repeat (STR) based genetic diversity and relationship of indigenous Niger cattle. Archives Animal Breeding, 60(4), 399-408.
[26]
Barani, A., Rahumathulla, P. S., Rajendran, R., Kumarasamy, P., Ganapathi, P., & Radha, P. (2015). Molecular characterization of Pulikulam cattle using microsatellite markers. Indian Journal of Animal Research, 49(1), 36-39.
[27]
Chaudhari, M. V., Parmar, S. N. S., Joshi, C. G., Bhong, C. D., Fatima, S., Thakur, M. S., & Thakur, S. S. (2009). Molecular characterization of Kenkatha and Gaolao (Bos indicus) cattle breeds using microsatellite markers. Animal biodiversity and conservation, 32(2), 71-76.
[28]
Gororo, E., Makuza, S. M., Chatiza, F. P., Chidzwondo, F., & Sanyika, T. W. (2018). Genetic diversity in Zimbabwean Sanga cattle breeds using microsatellite markers. South African Journal of Animal Science, 48(1), 128-141.
[29]
Montoya, A. E., Cerón-Muñoz, M. F., Moreno, M. A., Martínez, E., Corrales, J. D., Tirado, J. F., & Calvo, S. J. (2010). Genetic characterization of the Hartón del Valle, Angus, Brangus, Holstein, and Senepol cattle breeds in Colombia, using ten microsatellite markers. Revista Colombiana de Ciencias Pecuarias, 23(3), 283-291.
[30]
Devi, K. S., Gupta, B. R., Vani, S., Asha, U., Kumar, U. R., & Krishna, C. H. (2017). Microsatellite Analysis of Ongole Cattle (Bos indicus) Of A. P. International Journal of Science, Environment and Technology, Vol.6, 173 – 178.
[31]
Moazami-Goudarzi, K., Vaiman, D., Mercier, D., Grohs, C., Furet, J. P., Leveziel, H., & Martin, P. (1994). Emploi de microsatellites pour l'analyse de la diversité génétique des races bovines françaises: premiers résultats. Genetics Selection Evolution, 26(1), S155.
[32]
Joshi, P., Vyas, P., & Kashyap, S. K. (2018). Molecular characterization of Nagori cattle using microsatellite markers. Journal of Pharmacognosy and Phytochemistry, 7(2), 3250-3252.
[33]
Teneva, A., Todorovska, E., Tyufekchiev, N., Kozelov, L., Atanassov, A., Foteva, S., & Zlatarev, S. (2005). Molecular characterization of Bulgarian livestock genetic resources: 1. Genetic diversity in Bulgarian grey cattle as revealed by microsatellite markers. Biotechnology in Animal Husbandry, 21(5-6-2), 35-42.
[34]
Moore, E. E., Cogbill, T. H., Jurkovich, G. J., Shackford, S. R., Malangoni, M. A., & Champion, H. R. (1995). Organ injury scaling: spleen and liver (1994 revision). Journal of Trauma and Acute Care Surgery, 38(3), 323-324.
Browse journals by subject